zabika.ru 1

Ф 27-019

Учреждение образования

“Гродненский государственный университет имени Янки Купалы”


УТВЕРЖДАЮ

Декан факультета математики и информатики

_______________ Е.Н. Ливак

«___» ___________ ________________ г.

Регистрационный № УД- ________/р.


история и методология математики


Учебная программа для специальности:

(рабочий вариант)

1-31 03 01-02 Математика (научно-педагогическая деятельность)
Факультет математики и информатики

Кафедра алгебры, геометрии и методики преподавания математики
Курс 6

Семестр 11

Лекции

6




Зачет

11




(количество часов)







(семестр)
Всего аудиторных часов по дисциплине

6




Форма получения высшего образования

Заочная

(количество часов)








Составила М.В. Касперко, старший преподаватель

2010 г.

Рабочая программа составлена на основе учебной программы, утверждённой ___________________________________ Рег. №–_____________________________

Рассмотрена и рекомендована к утверждению в качестве рабочего варианта на заседании кафедры алгебры, геометрии и методики преподавания математики

26.06.2010 г., протокол №10

Заведующий кафедрой

____________________ А.А. Гринь



Одобрена и рекомендована к утверждению на заседании Методической комиссии специальностей факультета математики и информатики

29.06.2010 г., протокол № 6
Председатель

_______________ Ю.Я. Романовский
Одобрена и рекомендована к утверждению на заседании Совета факультета математики и информатики

30.06.2010 г., протокол № 6

Учёный секретарь

_______________ _________________

ПОЯСНИТЕЛЬНАЯ ЗАПИСКА

Изучение истории науки, ее методологических основ составляет важную часть подготовки специалистов в высших учебных заведениях. Невозможно познать математику, не ознакомившись с историей ее развития.

История есть наука об объективных законах развития математики. Выяснение того, как происходит это развитие в определенный исторический период и куда оно ведет, и выступает предметом истории математики.

Знание опыта развития математики как науки, умение его анализировать, осмысливать движущие силы и пути ее развития являются неотъемлемой частью профессионального потенциала будущего учителя математики.

Изучая историю математики, воссоздается богатство фактического содержания ее исторического развития, выясняется характер и особенности развития математики у отдельных народов в определенные исторические периоды, вклад, внесенный в математику великими учеными прошлого, и, особенно, отечественными учеными.

История математики раскрывает многообразные связи математики с практическими потребностями и деятельностью людей, с развитием других наук, вскрывает историческую обусловленность логической структуры современной математики, диалектику ее развития.


Содержание дисциплины предоставляет будущему учителю математики основательную базу для реализации принципа историзма в процессе преподавания школьного курса математики.

Университетский курс истории математики не может охватить все основные этапы ее развития глубоко и широко, поэтому соответственно формулируются цели и задачи дисциплины.
Цель дисциплины:


  • осмысление исторического опыта развития математики, тенденций и путей формирования современной математики;

  • обобщение и систематизация математических методов и теорий на определенных исторических этапах развития математики ;

  • формирование созидательного потенциала будущего учителя математики по реализации принципа историзма в процессе преподавания математики;

  • формирование эмоционально-ценностного отношения к развитию математики как науки.


Задачи изучения дисциплины

  • познакомиться с предметом и методом истории математики;

  • изучить основные этапы исторического развития математики с древности до наших времен;

  • проанализировать содержание развития математики в изучаемый исторический период;

  • сформировать методический банк для реализации принципа историзма в процессе преподавания школьного курса математики;


Требования к уровню усвоения дисциплины. Студенты должны

знать:

  • предмет и метод истории математики;

  • основные этапы исторического развития математики;

  • основные исторические факты, даты, события, персоналии;

  • роль истории математики в цивилизационном процессе.

уметь:

  • характеризовать этапы развития математики в пределах программы курса;

  • анализировать методы математики, процесс их формирования и развития;
  • выделять элементы историзма для использования их в преподавании математики школьного курса.


Требования к компетенциям

академическим:

уметь анализировать

  • основные этапы исторического развития математики;

  • основные тенденции развития математики как науки:

  • возникновение математических идей, методов и теорий;

  • роль истории математики в развитии смежных наук.

социально-личностным:

понимать

  • социокультурную обусловленность математических учений;

  • выдающуюся роль математики в истории человечества;

  • культурно-ценностный потенциал дисциплины для воспитания учащихся и самовоспитания как будущего математика.

быть способным характеризовать

  • достижения известных ученых не только как об основоположниках многих направлений в математике, но и о людях, чья жизнь весьма поучительна;

профессиональным:

владеть

  • практическими навыками и приемами реализации принципа историзма в процессе преподавания математики

  • методами истории математики в деятельности преподавания школьного курса математики

приобрести навыки

  • использовать автобиографические данные ученых математиков в учебно-воспитательном процессе;

  • проектировать внеклассную работу по математике на темы истории математики.



2. СОДЕРЖАНИЕ УЧЕБНОГО МАТЕРИАЛА

№№

Наименование раздела, темы дисциплины

Содержание в соответствии с типовой учебной программой (учебной программой)


1



Модуль 1.

Предмет и метод истории математики.


Формирование первых математических понятий и методов.

Предмет истории математики и методологии математики.Главнейшие периоды в истории математики. Роль истории математики в системе подготовки учителя математики


Математика в древнем Египте. Математика в Древнем Вавилоне. Математика Древнего Китая. Математика Древней Индии.

2

Модуль 2.

Формирование первых математических теорий.

Первые математические теории в Древней Греции. Аксиоматическое построение математики в эпоху эллинизма. Инфинитезимальные методы в древней Греции. Математические теории и методы поздней античности


3

Модуль 3.

Развитие элементарной математики.

Процесс создания математики переменных величи

Развитие математики в ХУ111 веке.

Математика народов Средней Азии и Ближнего Востока: багдадская, марагинская, самаркандская математические школы. Европейская математика в средние века и в эпоху Возрождения

Начало периода математики переменных величин. Возникновение аналитической геометрии. Накопление интеграционных и дифференциальных методов. Появление анализа бесконечно малых. Выдающиеся достижения европейских математиков в ХУ11 веке.


Условия и особенности развития математики ХУ111 века. Развитие аппарата математического анализа. Развитие геометрии. Создание предпосылок современной алгебры и теории чисел. Развитие теории вероятностей и комбинаторного анализа.

4

Модуль 4. Начало периода современной математики.

Развитие математики в Х1Х веке. Возникновение основных понятий современной алгебры. Развитие аппарата и приложений математического анализа. Создание теории функций комплексного переменного. Преобразование геометрии.


5

Модуль 5. Математика в Беларуси.

Математика в Беларуси в Х1У – ХУ11. Развитие математики в Беларуси в ХУ11- ХХ веках

6

Модуль 6. История развития математического факультета ГрГУ им. Я. Купалы.

Математическое образование и исследования по математике в Гродненском педагогическом институте. Создание педагогического института и физико-математического факультета. Формирование первых математических кафедр. Математическая жизниь в Гродненском педагогическом инстиитуте.

Математическое образование и исследования по математике в Гродненском университете. Создание университета и математического факультета. Деятельность математического факультета в восьмидесятые годы. Математический факультет в последнее десятилетие ХХ века.

3. УЧЕБНО-МЕТОДИЧЕСКАЯ КАРТА

№№

те

мы



Название раздела, темы, занятия; перечень изучаемых вопросов

Количество аудиторных часов



Материальное обеспечение занятия (наглядные, методические пособия)

Литература


Формы контроля знаний и компетен

ций

Всего

Лек

ции

Семи

нарс

кие заня

тия

Управ

ляемая самос

тоятельная работа


1

Модуль 1


Предмет истории математики и методологии математики

Формирование первых математических понятий, методов и теорий

2


2







Научно-методическое обеспечение (НМО)

Модуль 1


[1-3,9,21,16]

Интернет ресурсы





Проект

2

Модуль 2


Развитие элементарной математики

Процесс создания математики переменных величин

Развитие математики в ХУ111 веке

Начало периода современной математики

2

2





НМО

Модуль 2



[1-3;5;10-22]

Интернет ресурсы



Проект

3


Модуль 3


Математика в Беларуси

История развития математического факультета ГрГУ им. Я. Купалы

2



2







НМО

Модуль 3



[4;6; 10]

Интернет ресурсы

Интернет ресурсы

[7;8]

Проект



4. ИНФОРМАЦИОННО-МЕТОДИЧЕСКИЕ МАТЕРИАЛЫ

ПО ДИСЦИПЛИНЕ



пп

Перечень




Рыбников К.А.. История математики. МГУ, 1974.



Рыбников К.А. Введение в методологию математики. - М.: Изд-во МГУ, 1979.



Стройк Д.Я. Краткий очерк истории математики. М.:Наука, 1964.



Беспамятных Н.Д. Математическое образование в Белоруссии. Мн.: Просвещение, 1975.



Гусак А.А. Матэматыка на Буларусі у ХІУ - пачатку ХХ стагоддзя. Мн.: БДУ, 1999.



Хрестоматия по истории математики. Под ред. А.П.Юшкевича. М.: Просвещение, ч.І-П, 1976, 1977.



Математическое образование в Гродненском университете: Учебное пособие / Ю.П.Золотухин, Н.Л.Рожко, Л.В.Рудикова, С.Л.Соболевский; под ред. Ю.П.Золтухина. В 2 ч. Ч.1. Система математического образования в Гродненском педагогическом институте (1944-1978). – Гродно: ГрГУ, 2001. – 108 с.


Математическое образование в Гродненском университете: Учебное пособие / Ю.П.Золотухин, А.А.Крушельницкий, Л.В.Рудикова, Н.П.Шагун; под ред. Ю.П.Золтухина. В 2 ч. Ч.2. Система математического образования в Гродненском педагогическом институте (1978-2000). – Гродно: ГрГУ, 2003.




История математики с древнейших времён до начала Х1Х столетия. Под ред. А.П.Юшкевича, т.1-3. М.: Наука, 1970, 1971, 1972.



История отечественной математики. Под ред. И.З.Штокало, т.1-4. Киев: Навукова думка, 1966, 1967, 1968, 1970.



Юшкевич А.П. История математики в России до 1917 г. М.: Наука, 1968.



Математика Х1Х в. Под ред. А.Н.Колмогорова и А.П. Юшкевича. - М.: Наука, т.1-3, 1978, 1981, 1987.



С.Н.Марков. Курс истории математики. Иркутск, 1955.



Клайн М. Математика. Поиск истины. - М.: Изд-во Мир, 1988.



Клейн Ф. Лекции о развитии математики в ХІХ столетия. - 2-е изд. М.: Наука, 1989.



М.Я.Выгодский. Арифметика и алгебра в Древнем мире. М.: Наука, 1967.



Гусак А.А. Развіццё матэматыкі ў ХУШ - ХІХ стагоддзях. Мн.: БДУ, 1998.



Гусак А.А. Стварэнне і абгрунтаванне аналізу бясконца малых. Мн.: БДзУ, 1996.

Юшкевич А.П. История математики в средние века. М.: Физматгиз, 1961.




Бурбаки Н. Очерки по истории математики. М.: Иностр. Литература, 1963.



Ван-дер-Варден В.А. Пробуждающаяся наука. Математика древнего Вавилона, Египта, Индии. М.: Физматгиз, 1959.



Вилейтнер Г. История математики от Декарта до середины ХІХ столетия. М.: Физматгиз, 1960.




5. ПРОТОКОЛ СОГЛАСОВАНИЯ УЧЕБНОЙ ПРОГРАММЫ


ПО ИЗУЧАЕМОЙ УЧЕБНОЙ ДИСЦИПЛИНЕ

С ДРУГИМИ ДИСЦИПЛИНАМИ СПЕЦИАЛЬНОСТИ


Название дисциплины, с которой требуется согласование

Название кафедры

Предложения об изменениях в содержании учебной программы по изучаемой учебной дисциплине

Решение, принятое кафедрой, разработавшей учебную программу

(с указанием даты и номера протокола) 1























6. ДОПОЛНЕНИЯ И ИЗМЕНЕНИЯ К УЧЕБНОЙ ПРОГРАММЕ

ПО ИЗУЧАЕМОЙ УЧЕБНОЙ ДИСЦИПЛИНЕ

на ____ / _____ учебный год



п/п


Дополнения и изменения

Основание




















Учебная программа пересмотрена и одобрена на заседании кафедры

(протокол № __ от _______ 200__ г.)
Заведующий кафедрой
__________________________ ______________ _______________________

(степень, звание) (И.О.Ф