zabika.ru   1 2 3 4 ... 7 8

7. ЛИТЬЕ

Типичная структура литейного слитка состоит из трех зон:
1. Зона быстрого охлаждения - несколько слоев мелкодисперсных равноосных кристаллов около стенок изложницы.
2. Зона столбчатых кристаллов - ориентированные кристаллы, растущие в направлении, противоположном направлению теплоотвода через стенки изложницы.
3. Зона равноосных кристаллов – равноосные неориентированные кристаллы больших размеров в центре слитка.
В зависимости от условий заливки и материала пропорция зон столбчатых и равноосных кристаллов в слитке может меняться. Медленное охлаждение, добавление зародышеобразующих агентов и перемешивание расплава увеличивает протяженность зоны равноосных кристаллов. Расширенная зона столбчатых кристаллов характерна для чистых металлов.







Чем больше отношение объема к площади поверхности, тем медленнее слиток охлаждается и затвердевает.
Время затвердевания слитка может оценить по уравнению Хворинова:




TS = B·(V/A)2,

где V
- объем; A - площадь поверхности; B – коэффициент затвердевания.



Модели часто имеют уклоны на боковых поверхностях, параллельных направлению извлечению. Это позволяет легко извлекать модель без повреждений и разрушения полости литейной формы. Угол уклона составляет обычно 0.5-2o. Угол зависит, главным образом, от параметров литейного процесса и используемых материалов.







Материалы с небольшим температурным диапазоном кристаллизации (например, чистые металлы или эвтектические сплавы) имеют тенденцию к образованию больших концентрированных усадочных раковин (справа). Отливки сплавов с большим температурным диапазоном охлаждения имеют пористость, распределенную по всему объему материала.







Жидкотекучесть – это способность материала в расправленном состоянии течь и заполнять полости литейной формы перед затвердеванием. Жидкотекучесть чистых металлов и эвтектических сплавов выше, чем у доэвтектоидных и заэвтектоидных сплавов.






Прибыли используются для компенсации усадки залитого металла при затвердевании и избежания формирования усадочных раковин в отливке. Усадочные раковины формируются в прибыли, потому что это самая верхняя часть слитка, твердеющего в форме. Прибыли обычно расположены в центре наиболее массивных секций отливок. Прибыль должна быть достаточно большой, чтобы компенсировать усадку в отливке. Металлы имеют различную усадку, которая и влияет на размер прибылей.




Усадка при отвердевании,
%

Al

Cu

Mg

Zn

Стали

6.6

4.9

4.0

3.7

2.5-4.0





Отличия литья в кокиль от литья в песчаную форму:

 Большая точность размеров и более гладкие поверхности;

 Не требуется новая литейная форма для производства каждой детали;

 Улучшенные механические свойства благодаря мелкозернистой структуре;

 Меньшее время для отливки детали;

 Существуют ограничения на форму и размеры отливаемых деталей;

 Не подходит для сплавов с низкой жидкотекучестью.

8. ПОЛИМЕРНЫЕ МАТЕРИАЛЫ

Молекулярная структура полимеров может быть линейная, с поперечными связями или сетевая (с большим количеством поперечных связей). Термопласты имеют линейную или разветвленную структуру. Термопласты размягчаются при нагревании и затвердевают при охлаждении без изменения свойств. Это позволяет повторно использовать отходы термопластов. Полимеры с поперечными связями называются реактопластами. При нагревании реактопласты остаются относительно твердыми и не могут быть подвергнуты переработке без химической деградации.






При температуре плавления происходит резкое изменение удельного объема (величина обратная плотности) кристаллических материалов. Плотность чистых аморфных материалов изменяется при температуре стеклования. Это влечет за собой существенные изменения механических свойств материала. Как правило, ниже температуры стеклования полимеры жесткие и хрупкие, в то время как при температурах выше температуры стеклования они становятся податливыми и пластичными. Полукристаллические полимеры обладают промежуточными свойствами, характерными для кристаллических и аморфных материалов, которые включают определенную температуру плавления и небольшое изменение плотности при температуре стеклования. Обычно, для термопластов и реактопластов температура стеклования выше комнатной температуры, в то время как для эластомеров температура стеклования ниже комнатной температуры. Эластомеры могут выдерживать большой деформации (до нескольких сотен процентов) без разрушения и восстанавливаться в форме и размерах при снятии нагрузки.



Медленное охлаждение приводит к более высокой степени кристаллизации полукристаллических полимеров. Степень кристаллизации (доля кристаллической фазы) влияет на механические свойства. Модуль упругости кристаллической фазы существенно выше, чем аморфной фазы. Как правило, чем выше степень кристаллизация, тем выше модуль упругости и прочность материала.






Механические свойства термопластичных полимеров сильно зависят от температуры испытания и скорости деформации. Полимер становится более податливым и пластичным с увеличением температуры. Как правило, уменьшение скорости деформации имеет такое же влияние на соотношение напряжение-деформация, как и повышение температуры.







Влияние температуры на механические свойства полимеров отличается для термопластов и реактопластов. В отличии от термопластов реактопласты не проявляют свойств вязкой жидкости. Они разрушаются и разлагаются при высокой температуре.







Вязкоупругое поведение характерно для аморфных полимеров при температурах выше температуры стеклования. При этом существует временная задержка между приложением напряжения и возникновением соответствующей деформации. Вязкоупругая деформация – это комбинация деформации вязкой жидкости и упругой деформации твердого тела.



9. КОМПОЗИЦИОННЫЕ МАТЕРИАЛЫ

Модуль упругости однонаправленного композита вдоль направления армирования (укладки волокон) может быть рассчитан по правилу смеси:




Ec = EfVf + EmVm,

где E
f - модуль волокна; Em - модуль матрицы; Vf , Vm – относительное объемное содержание волокон и матрицы, соответственно.



Слоистый композит с ортогональным армированием [0o/90o], показанный на рисунке справа, будет коробиться при приложении одноосного растягивающего напряжения из-за различия модуля упругости вдоль и перпендикулярно оси волокон. Жесткость материала в направлении укладки волокон выше и, поэтому слой композита с волокнами, расположенными параллельно приложенному напряжению, будет растягиваться меньше, чем слой, нагруженный поперек волокон.





Модуль упругости композитов с непрерывными волокнами зависит от угла между направлением волокон и приложенной нагрузкой. Максимальная жесткость композита проявляется при приложении нагрузки параллельно оси волокон. Жесткость слоистых композитов с взаимно пересекающимися волокнами [] выше, чем у однонаправленных композитов, благодаря дополнительному ограничению сдвиговых деформации.






Чем выше объемное содержание волокон Vf однонаправленных волокнистых композитов, тем выше их способность выдерживать циклическую нагрузку. Сопротивление усталости композитов существенно зависит от угла между направлением приложенной нагрузки и осью волокон. Долговечность композита уменьшается при увеличении данного угла.






Прочность композитов с короткими волокнами увеличивается при увеличении отношения длины волокна к диаметру l/d. Поскольку количество дефектов зависит (помимо прочего) от диаметра волокна, прочность волокна определенной длины возрастает с уменьшением диаметра волокна. Для заданного объемного содержания волокон более длинные волокна несут большую долю нагрузки, приложенную к композиту.





Остаточные напряжения возникают при охлаждении слоистых композитов с ортогональным армированием из-за анизотропии термической усадки параллельно и перпендикулярно направлению армирования. В композитах стеклянные волокна/эпоксидная матрица коэффициент теплового расширения вдоль оси волокон ниже, чем перпендикулярно волокнам. При охлаждении, слои с укладкой волокон 90o растягиваются, а слои с волокнами, расположенными под углом 0o , сжимаются. Как правило, трещины образуются перпендикулярно растягивающим напряжениям.




Известно, что композиты имеют высокую удельную прочность, которая определяется как отношение предела прочности на растяжение в к плотности материала •g.
Удельная прочность композитов с непрерывными волокнами намного выше, чем у обычных материалов, таких как алюминий или сталь.






Нагрузка, приложенная к волокнистым композитам, распределяется между волокнами и матрицей. Соотношение между нагрузкой, передающейся на волокна Pf и матрицу Pm , зависит от отношения EfVf к EmVm:




<< предыдущая страница   следующая страница >>